15 research outputs found

    Data Embroidery with Black-and-White Textures

    Full text link
    We investigated data embroidery with black-and-white textures, identifying challenges in the use of textures for machine embroidery based on our own experience. Data embroidery, as a method of physically representing data, offers a unique way to integrate personal data into one's everyday fabric-based objects. Owing to their monochromatic characteristics, black-and-white textures promise to be easy to employ in machine embroidery. We experimented with different textured visualizations designed by experts and, in this paper, we detail our workflow and evaluate the performance and suitability of different textures. We then conducted a survey on vegetable preferences within a family and created a canvas bag as a case study, featuring the embroidered family data to show how embroidered data can be used in practice

    Design Characterization for Black-and-White Textures in Visualization

    Full text link
    We investigate the use of 2D black-and-white textures for the visualization of categorical data and contribute a summary of texture attributes, and the results of three experiments that elicited design strategies as well as aesthetic and effectiveness measures. Black-and-white textures are useful, for instance, as a visual channel for categorical data on low-color displays, in 2D/3D print, to achieve the aesthetic of historic visualizations, or to retain the color hue channel for other visual mappings. We specifically study how to use what we call geometric and iconic textures. Geometric textures use patterns of repeated abstract geometric shapes, while iconic textures use repeated icons that may stand for data categories. We parameterized both types of textures and developed a tool for designers to create textures on simple charts by adjusting texture parameters. 30 visualization experts used our tool and designed 66 textured bar charts, pie charts, and maps. We then had 150 participants rate these designs for aesthetics. Finally, with the top-rated geometric and iconic textures, our perceptual assessment experiment with 150 participants revealed that textured charts perform about equally well as non-textured charts, and that there are some differences depending on the type of chart

    Reflections on Visualization in Motion for Fitness Trackers

    Get PDF
    International audienceIn this paper, we reflect on our past work towards understanding how to design visualizations for fitness trackers that are used in motion. We have coined the term "visualization in motion" for visualizations that are used in the presence of relative motion between a viewer and the visualization. Here, we describe how visualization in motion is relevant to sports scenarios. We also provide new data on current smartwatch visualizations for sports and discuss future challenges for visualizations in motion for fitness trackers

    Data Embroidery with Black-and-White Textures

    No full text
    International audienceWe investigated data embroidery with black-and-white textures, identifying challenges in the use of textures for machine embroidery based on our own experience. Data embroidery, as a method of physically representing data, offers a unique way to integrate personal data into one's everyday fabric-based objects. Owing to their monochromatic characteristics, black-and-white textures promise to be easy to employ in machine embroidery. We experimented with different textured visualizations designed by experts and, in this paper, we detail our workflow and evaluate the performance and suitability of different textures. We then conducted a survey on vegetable preferences within a family and created a canvas bag as a case study, featuring the embroidered family data to show how embroidered data can be used in practice

    Data Embroidery with Black-and-White Textures

    No full text
    International audienceWe investigated data embroidery with black-and-white textures, identifying challenges in the use of textures for machine embroidery based on our own experience. Data embroidery, as a method of physically representing data, offers a unique way to integrate personal data into one's everyday fabric-based objects. Owing to their monochromatic characteristics, black-and-white textures promise to be easy to employ in machine embroidery. We experimented with different textured visualizations designed by experts and, in this paper, we detail our workflow and evaluate the performance and suitability of different textures. We then conducted a survey on vegetable preferences within a family and created a canvas bag as a case study, featuring the embroidered family data to show how embroidered data can be used in practice

    Design Characterization for Black-and-White Textures in Visualization

    No full text
    International audienceWe investigate the use of 2D black-and-white textures for the visualization of categorical data and contribute a summary of texture attributes, and the results of three experiments that elicited design strategies as well as aesthetic and effectiveness measures. Black-and-white textures are useful, for instance, as a visual channel for categorical data on low-color displays, in 2D/3D print, to achieve the aesthetic of historic visualizations, or to retain the color hue channel for other visual mappings. We specifically study how to use what we call geometric and iconic textures. Geometric textures use patterns of repeated abstract geometric shapes, while iconic textures use repeated icons that may stand for data categories. We parameterized both types of textures and developed a tool for designers to create textures on simple charts by adjusting texture parameters. \hty{30 visualization experts used our tool and designed 66 textured bar charts, pie charts, and maps.} We then had 150 participants rate these designs for aesthetics. Finally, with the top-rated geometric and iconic textures, our perceptual assessment experiment with 150 participants revealed that textured charts perform about equally well as non-textured charts, and that there are some differences depending on the type of chart

    BeauVis: A Validated Scale for Measuring the Aesthetic Pleasure of Visual Representations

    No full text
    International audienceWe developed and validated a rating scale to assess the aesthetic pleasure (or beauty) of a visual data representation: the BeauVis scale. With our work we offer researchers and practitioners a simple instrument to compare the visual appearance of different visualizations, unrelated to data or context of use. Our rating scale can, for example, be used to accompany results from controlled experiments or be used as informative data points during in-depth qualitative studies. Given the lack of an aesthetic pleasure scale dedicated to visualizations, researchers have mostly chosen their own terms to study or compare the aesthetic pleasure of visualizations. Yet, many terms are possible and currently no clear guidance on their effectiveness regarding the judgment of aesthetic pleasure exists. To solve this problem, we engaged in a multi-step research process to develop the first validated rating scale specifically for judging the aesthetic pleasure of a visualization (osf.io/fxs76). Our final BeauVis scale consists of five items, "enjoyable," "likable," "pleasing," "nice," and "appealing." Beyond this scale itself, we contribute (a) a systematic review of the terms used in past research to capture aesthetics, (b) an investigation with visualization experts who suggested terms to use for judging the aesthetic pleasure of a visualization, and (c) a confirmatory survey in which we used our terms to study the aesthetic pleasure of a set of 3 visualizations

    Pondering the reading of visual representations

    No full text
    We follow a theoretical approach to define the concept of reading visualizations. In the past, researchers often assessed readability based on the cognitive processes at work during an individual's engagement with a visual representation. The commonly used term "reading" in these studies, however, often lacks consistency: sometimes it refers solely to the extraction of textual information, while in other instances it is limited to the interpretation of visual signals such as patterns, color gradients, or object sizes. We argue that there exists a gap in the literature for a comprehensive, unifying definition of reading that would potentially broaden the horizons of design spaces and analytical frameworks in our field. To address this issue, we discuss models of reading text and how they can potentially relate to visualization reading

    Pondering the reading of visual representations

    No full text
    We follow a theoretical approach to define the concept of reading visualizations. In the past, researchers often assessed readability based on the cognitive processes at work during an individual's engagement with a visual representation. The commonly used term "reading" in these studies, however, often lacks consistency: sometimes it refers solely to the extraction of textual information, while in other instances it is limited to the interpretation of visual signals such as patterns, color gradients, or object sizes. We argue that there exists a gap in the literature for a comprehensive, unifying definition of reading that would potentially broaden the horizons of design spaces and analytical frameworks in our field. To address this issue, we discuss models of reading text and how they can potentially relate to visualization reading

    Visualizing Information on Smartwatch Faces: A Review and Design Space

    No full text
    We present a systematic review and design space for visualizations on smartwatches and the context in which these visualizations are displayed--smartwatch faces. A smartwatch face is the main smartwatch screen that wearers see when checking the time. Smartwatch faces are small data dashboards that present a variety of data to wearers in a compact form. Yet, the usage context and form factor of smartwatch faces pose unique design challenges for visualization. In this paper, we present an in-depth review and analysis of visualization designs for popular premium smartwatch faces based on their design styles, amount and types of data, as well as visualization styles and encodings they included. From our analysis we derive a design space to provide an overview of the important considerations for new data displays for smartwatch faces and other small displays. Our design space can also serve as inspiration for design choices and grounding of empirical work on smartwatch visualization design. We end with a research agenda that points to open opportunities in this nascent research direction. Supplementary material is available at: https://osf.io/nwy2r/
    corecore